
International Journal of Theoretical Physics, Vol. 36, No. 2, 1997 

Integration of Einstein's Equations in the Weak- 
Field Domain Using the "Einstein" Gauge 
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We propose a new alternative gauge for the Einstein equations instead of the de 
Donder gauge, which allows in the limit of weak fields a straightforward 
integration of these equations. The Newtonian potential plays a new and interesting 
role in this framework. The calculations are demonstrated explicitly for two 
simple astrophysical models. 

1. I N T R O D U C T I O N  

The usual way to solve the Einstein equations after linearization is first 
to choose the de Donder or harmonic gauge and second to integrate, in strict 
analogy to the inhomogeneous Maxwell equations of  electrodynamics, via 
the use of  retarded (in order to preserve causality) Green functions. 

The common opinion has been that this would be the only generaly way 
to derive a comprehensive solution of the Einstein equations. This had led 
to many speculations about the uniqueness of  the de Donder gauge, which 
many scientists have tried to interpret not only as some random mathematical 
structure, but as something more fundamenta l - - the  "physical gauge" (Fock, 
1964, w167 93). Further fundamental physical arguments for such an opinion 
have been given. 

Nevertheless, in working with rather unconventional methods on finding 
the correct description for the microscopic gravitational interaction between 
elementary particles in the realm of quantum physics (Dehnen and Hitzer, 
1994, 1995) we were led in a natural way to a new way of integrating the 
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Einstein equations in their linearized version. This new method relies on 
basically two pillars: the use of a special gauge, which Einstein himself had 
suggested (Einstein, 1916), in order to give his theory an as elegant and 
concise a shape as possible; and a supplementary gauge condition adding some 
further specification to Einstein's original suggestion. After implementing this 
supplemented special gauge, the integration of the Einstein equations after 
lineaxization becomes straightforward. So far as we know, such an integration 
does not appear in the literature. 

We have obtained an alternative to the widely accepted standard of the 
de Donder gauge, so that the arguments about its fundamental physical nature 
should be carefully reviewed, especially since with the use of the new gauge 
Einstein's nonlinear theory becomes polynomial. This will be discussed in 
detail in a future paper. 

Yet another highlight concerns the role of Newton's scalar potential, 
which naturally appears in the Einstein equations in this gauge. No laborious 
and subtle procedure has to be applied to regain Newton's scalar theory, but 
its natural embedding easily unfolds. 

2. THE EINSTEIN EQUATIONS IN THE SUPPLEMENTED 
EINSTEIN GAUGE 

The general non-Euclidean metric diag g ~  = (+,  , , - )  may be 
decomposed as 

g ~  = ~q~ + %,~ (2.1) 

where -q~ is the usual Minkowski metric (exclusively used for raising and 
lowering indices) and I , /~ I < <  1. In the Einstein gauge we have 

det(g~,~) = - 1 (2.2) 

Inserting (2.1) into (2.2) yields (index raising and lowering only with -qr 

~/ := ~&;qr = 0. (2.3) 

Using (2.3), the Einstein equations linearized in %,~ can be simplified to 

a'~O~,~l v'~ - a,~O~'y ' ~  - O~,O~'y '~t" + O,~afs'y'~f~'q t'~ = - 1 6 " t r G T  ~ (2.4) 

We first show in which way the Einstein gauge can be achieved initially 
assuming ~ 4: 0. The general gauge transformations are 

x r = x '~' + ~ (2.5a) 

resulting infinitesimally in 
I ~/r = %,~ + 0~t, + O~,~ (2.5b) 
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and 

",/ = y + 2a,,{" (2.5c) 

Condition (2.3) of the vanishing of "y' may now be achieved by demanding 

0,,~ ~' = - � 8 9  (2.6) 

But that is only one condition and we will prove that (2.6) may be supple- 
mented by 

0,~/~, ~ = 0~'y~ ~ + O~0~, + 0~O,~ ~ = 2 O j  (2.7) 

wheref is  a scalar function of the coordinates. Inserting (2.6) into (2.7) yields 

O~O~, - 2 0 j  = � 89  - O~/~ ~ (2.7a) 

Equations (2.6) and (2.7a) have the common feature that the unknowns entities 
~ '  and f are on the left-hand sides and the known ones on the right-hand 
sides. Their solution works as follows. Forming the divergence of (2.7a) yields 

a.a"a , .~  ~ - 2ar = �89 - a~a..y ~" (2 .8)  

Inserting (2.6) a second time and rearranging the terms leads to the determina- 
tion equation for 

~(a~a,,.y - a~a~3,) (2 .9)  

Equation (2.9) allows us immediately to calculate f via Green functions. The 
solution for f may now be inserted into (2.7a) and the vector ~ '  therefore 
can be explicitly calculated from 

a.a"~r = 2 0 j  + � 8 9  o.~/~" (2.10) 

via Green functions. The solutions for f and ~ will obviously satisfy (2.6) 
and (2.7) and therefore allow us to work in a coordinate system in which in 
addition to the Einstein gauge (2.2) or (2.3) equation (2.7) holds. Having 
achieved this, we may rewrite the Einstein equations (2.4) using (2.3) and 
(2.7) as 

O,~O~"y v' '  - 4 a ~ a " f  + 2O,~O'~frl ~" = - 1 6 , r r G T  ~'~ (2.1 la) 

and the trace equation 

O.c3~f  = - 4 7 r G T  (2.11 b) 

(T being the trace of T~'"). Because of O~T~ ~ = 0 the conditions (2.3) and 
(2.7) are in turn consequences of the field equations (2.1 t) as is the case in 
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the de Donder gauge. Thus the conservation law guarantees the existence of 
the retarded or advanced integrals of (2.9) and (2.10). 

3. THE NEW INTEGRATION PROCEDURE 

The general way to solve Einstein's equations (2.11) bearing the special 
gauge (2.3) in mind will be first to calculate the scalar functionfvia convolu- 
tion of the trace of the energy-momentum tensor on the right-hand side of 
(2.lib) with the well-known retarded Green functions D(x - x') of the 
D'Alembert operator on the left-hand side: 

f (x )  = 4~rG I D(x - x ')T(x')  d4x ' (3.1) 

The solution forfmust then be inserted on the left of (2. l la) in order to obtain 

[ I ] 0.0"~/~ = - 16~G T ~ - ~ ~ 7" - 0~0 ~ D(x - x')T(x') d4x ' (3.2) 

A second integration via convolution of the dght-hand side of (3.2) with the 
respective Green functions of the D'Alembert operator on the left-hand side 
results in this final explicit expression for the non-Euclidean deviation ~/~ 
of the general metric from the Minkowski metric: 

~1~" = 16.trG f D ( x -  x ' ){T~"(x  ') 

- �89 - O~'O" f D(x'  - x")T(x") d4x"} d4x ' (3.3) 

It is remarkable that in the vacuum (T~ = 0) equation (3.2) does not go 
over into a D'Alembert equation, as is the case in the de Donder gauge. 
Consequently, the general conditions on T~ for the existence of the integral 
in (3.3) cannot be given so easily. Instead we discuss two examples in 
Section 5. 

4. THE NEWTONIAN LIMIT 

In the Newtonian limit we simply approximate the D'Alembert operator 
by the three-dimensional space Laplace operator and the trace T of the energy- 
momentum tensor on the fight-hand side of (2.1 lb) by the matter density p: 

Af = 4-rrGp (4.1) 
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which reveals that the scalar function f must be identified with Newton's 
scalar potential ~b: 

f(x) = qb(x) (4.2) 

It is therefore obvious that in the specified "Einstein" gauge the trace of the 
Einstein equations (2.1 lb) is the general relativistic analogue of the scalar 
Newtonian equation of  gravity. It is shown thereby that a "generalized form" 
of Newton's scalar potential, the scalar f, is naturally present in the theory 
of general relativity. We now rewrite the time-time component of equation 
(3.2) for the static case: 

A~/oo = 16-rrG(Too - �89 (4.3) 

Replacing T oo by the matter density p yields the conclusion that ",/oo is two 
times f and therefore 

~oo(x) = 2f(x) = 2dO(x) (4.4) 

Now, according to the geodesic equation, this ~/oo suffices to determine the 
nonrelativistic trajectory of a massive body. 

Regarding the swiftness and elegance of this transition from general 
relativity to Newtonian gravity, it seems to work just as naturally as in the 
framework of the de Donder gauge. Newton's scalar potential itself achieves 
new, not only nonrelativistic eminence. 

5. S O L U T I O N S  F O R  H O M O G E N E O U S  AND P O L Y T R O P I C  
S P H E R E S  

Since gas spheres with homogeneous density p may serve as simple 
models for stars or other astrophysical objects, the solution of Einstein's 
equations in the presently proposed "Einstein" gauge will be given explicitly. 
A second, more realistic model, the polytropic gas sphere with zero pressure 
on its surface, follows. 

5.1. Gas Spheres with Homogeneous Density p 

In the case of static homogeneous density 

p, Ixl --< R 
p(x) = 0, Ixl > R (5.1) 

in first approximation the energy-momentum tensor T '~ takes the simple form 

{~ for ot = 13 = 0  
T'~ = for or, I 3 :/: 0 (5.2) 
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with the trace 

T = T"a-q,~a = p (5.3) 

According to (4.2) and (4.4), f becomes the usual Newtonian scalar 
potential and ,y0o its double value, 

f c(s ) 
~/oo(X) = 2f(x) = ~ R \ R  2 - 3 , r < R 

/ - 2  MG , r > R  
k r 

(5.4a) 

where 

M = -~'n'R3p; r = I x I 

The space-time components of ~/'~a are zero, 

~ / o ~ = ~ h , o = 0  for ~ =  1 ,2 ,3  

(5.5) 

(5.4b) 

The space components are, according to (3.3), 

i1 ] "yr = ~ f (x)  + h(x) 

x~x v 
- 3 - ~ - - h ( x ) ,  I ~ , v ~  1 ,2 ,3  

(5.4c) 

where 

I 4  M r2 
-~  G - ~ ,  r < R  

h(x) = 2 1 2 R 2 

[3 M O  - M O - -  r > R  
r r 3 , 

(5.4d) 

It is interesting that for R > 0 the gravitational potentials (5.4c) contain for 
r > R not only l lr terms, but also such terms which decrease with 1/ 
r 3. Equation (5.4a) already reveals that the gravitational redshift turns out 
as usual. 

The solution for r > R agrees with Einstein's original suggestion for 
the field of a point mass (Einstein, 1916, p. 819) 2 

2Einstein omitted the factor 2 in his formulas. 
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'~p ,v  Einstein = 

- 2  GM - - ,  ~ = v = O  
r 

2GM x~x ~ 
r r2 , ~ , v  ~ [ 1 , 2 , 3 ]  

O, otherwise 

(5.6) 

up to a term 

GMR 2 - ~  ~ + 3 - 7  ], ~, v E { 1 , 2 , 3 }  
a ~  = (5.7) 

t.0, otherwise 

which is such that 

A a ~  = 0 (5.8) 

and which vanishes in the point mass limit R = 0. Following the original 
procedure Einstein used to calculate the gravitational bending of light via 
Huygen's principle (Einstein, 1916) 3 applied to the metric (5.6) and (5.7) 
yields the usual result. 

5.2. The Polytropic Gas Sphere 

The general polytropic equation of  state is 

p = otp v, a , ~ / =  const, a > 0 ,  ~/--> 1 (5.9) 

where p and p are the pressure and density of  the gas, respectively, and ~/is 
the so-called polytropic index. It is known that in the Newtonian case the 
Emden equation is exactly solvable for the physically interesting value -y = 
2 (e.g., matter inside Jupiter). Therefore we restrict ourselves in the following 
to that case, ~/ = 2. Then it can be shown (Dehnen and Obregon, 1971) that 
the conservation laws yield exactly 

1 1 (5.10) 
P = o L  

where ~ is the length of the timelike Killing vector (llv means the covariant 
differentiation w.r.t, x~): 

~llv + ~t1~ = 0, 62 := ~ > 0 (5.11) 

3Because Einstein missed a factor 2 in the components of his metric ]Einstein (1916), formula 
(70)], he also obtained only one-half the correct value for the light bending angle (Bergmann, 
1942, p. 221). 
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The index s in (5.10) indicates the evaluation at the surface of the sphere 
/'~--g. 

The coordinates can be chosen such that 

= ~ = , / l  + ~oo (5.12) 

which yields for p the approximation (1~/~1 < <  1) 

1 
P = ~ (~0os - ~0o) (5.13) 

The equation of state (5.9) shows for ~ = 2 that the pressure vanishes in 
first-order approximation. We again have the same structure of T ~'a as we 
had in (5.2), with the only difference that p itself now depends on the metric. 

The solution now is 

{ ~ i  1 + R sin'trr _M_~( --'trr --R)'  r<R 
~0o(X) = 2f(x) = (5.14a) 

MG r>R 
r 

(5.4b) is again valid for the space-time components. 
The space-space components are again given by (5.4c). Only the function 

h is now 

h(x)=  

{ ~ i  - ~  ( - ( R ) 3  s i n ( R ) +  (R)2 c~  

M? { - 2 ( R )  2 ~ R2 r2 - -  -4- j j ,  

2 . ' lYr r<R 

r>R 

(5.14b) 

The solution for r > R again agrees with Einstein's suggestion (5.6) up 
to a term a~v which is identical with (5.7) up to a simple change in the 
numerical factor: 

~ 2 - ~ (5.15) 

The remarks below equations (5.4), resp. (5.8), also apply for the gravitational 
metric of the polytropic gas sphere calculated above. It may be of interest 
that for other (finite) values of the polytropic index no analytic solution can 
be given. 
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5.3. Equivalence with the Schwarzschild Metric 

In order to prove in both cases the equivalence of the calculated metrics 
for r > R outside the spheres with the Schwarzschild metric (radial coordinate 
rs) one needs to write both metrics in polar coordinates. Rescaling the radial 
coordinate by 

r~ = r 2 1 + F G M - ~  (5.16a) 

with 

for the homogeneous gas sphere 

for the polytropic gas sphere 
(5.16b) 

yields the usual form of the Schwarzschild metric in first-order approximation. 

6. CONCLUSIONS 

The proposed new gauge and the new way for solving the Einstein 
equations may seem in the weak-field domain only as some kind of technical 
alternative apart from the new light they shed on the role of the Newtonian 
potential even in the theory of  general relativity. But the general nonlinear 
form of the special "Einstein" gauge is under investigation. The results will 
be presented in a future paper. 
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